Fabrication of Nanoshell-Based 3D Periodic Structures by Templating Process using Solution-derived ZnO

نویسندگان

  • Shinji Araki
  • Yasuaki Ishikawa
  • Xudongfang Wang
  • Mutsunori Uenuma
  • Donghwi Cho
  • Seokwoo Jeon
  • Yukiharu Uraoka
چکیده

Fabrication methods for a 3D periodic nanostructure with excellent and unique properties for various applications, such as photonic and phononic crystals, have attracted considerable interest. Templating processes using colloidal crystals have been proposed to create nanoshell-based 3D structures over a large area with ease. However, there are technical limitations in structural design, resulting in difficulties for structural flexibility. Here, we demonstrate a combination of proximity field nanopatterning and infiltration processes using solution-derived ZnO for a nanoshell-based 3D periodic structure with high structural flexibility and controllability. A unique process of infiltration of a solution-derived material into a polymeric template prepared by a proximity field nanopatterning process achieves the fabrication of a pre-formed layer that works as a protective layer for the template and framework for the inverse structure. Subsequently, this process shows the controllability of nanoshell thickness and significant improvement in the structure height shrinkage factor (16%) compared to those of a previous non-vacuum infiltration method (34%). The proposed method offers high controllability and flexibility in the design of structural sizes, leading to further development toward nanoshell-based 3D structures for various applications including energy devices and sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Ultraviolet Photodetector Based on ZnO Nanostructures and Calcium Impurities Using Sol-Gel Method

In this paper an ultraviolet (UV) photodetector has been fabricated using ZnO nanostructures. The cheap fabrication process, high-quality nanostructures and the desired results for the photodetector are the most important characteristics of the proposed method. ZnO nanostructures have been grown using sol-gel method. In order to increase the sensitivity, calcium impurities have been added to na...

متن کامل

In Situ Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems

In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of S...

متن کامل

Three Dimensional ZnO Hierarchical Nanostructures:

Zinc oxide (ZnO) nanostructures have been studied extensively in the past years due to 12 the novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention 13 has been paid to assemble nanoscale building blocks into three dimensional (3D) complex 14 hierarchical structures, which not only inherit the excellent properties of the single building blocks 15 but als...

متن کامل

SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD

In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...

متن کامل

Template Route to Chemically Engineering Cavities at Nanoscale: A Case Study of Zn(OH)2 Template

A size-controlled Zn(OH)(2) template is used as a case study to explain the chemical strategy that can be executed to chemically engineering various nanoscale cavities. Zn(OH)(2) octahedron with 8 vertices and 14 edges is fabricated via a low temperature solution route. The size can be tuned from 1 to 30 μm by changing the reaction conditions. Two methods can be selected for the hollow process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017